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Received 7 January 1980, in final form 20 February 1980 

Abstract. It is shown that the radial motion of a charged particle moving in a helical coil may 
be described in terms of motion in a one-dimensional potential, the potential being related 
to a suitable average of the components of the magnetic field. An explicit form for this 
potential is given. Good agreement is found with numerical orbit calculations. 

1. Introduction 

In a recent paper Blewett and Chasman (1977) discussed the motion of a charged 
particle in a static magnetic field with helical symmetry. Such studies are of importance 
in the study of the production of synchrotron radiation using ‘helical wiggler’ devices 
and also in a study of the so-called ‘free electron lasers’. Blewett and Chasman solved 
the particle orbit equations numerically and also developed an approximate analytic 
treatment which reproduced the main features of the numerical results. In their 
treatment the spatial variation of the magnetic field components was replaced by the 
lowest significant order Taylor series expansion. Thus their analysis is limited to those 
particles which remain close to the axis of the device for all their motion. These authors 
also made the reasonable assumption that the axial velocity was much larger than the 
radial component. 

A little while ago the present author studied the motion of charged particles in a 
class of periodically varying magnetic fields (Rowlands 1975). For particles whose axial 
velocity is much larger than their radial component, a systematic expansion technique 
was developed which showed that, to lowest significant order, the transverse motion of 
the particle was identical to that of a particle constrained to move in a one-dimensional 
potential well. A general form for this potential was obtained in terms of a suitable 
average of the magnetic field components. Comparison of this theory with numerical 
results showed excellent agreement (Hooper 1975). 

It is the purpose of this paper to describe the application of the above-mentioned 
expansion technique to the problem of a charged particle moving in a magnetic field 
with helical symmetry. Such fields are readily produced by current flowing in a solenoid 
whose turns are drawn apart to make a helix with finite pitch. Again one finds that the 
radial motion may be described by an effective one-dimensional motion in a potential 
well with the motion along the axis playing the role of time. The form of this potential is 
obtained as an average over one helical period of an explicit function of the associated 
vector potential. Knowledge of this potential is sufficient to understand the radial 
excursions of a charged particle in the real magnetic field. Unlike the treatment of 
Blewett and Chasman it is not necessary to limit the radial excursions of a particle to be 
near the axis. 
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In the next section the exact equations of motion are manipulated into a form 
suitable for the expansion technique which is developed in § 3. A general form for the 
effective one-dimensional potential is given in § 3 and is applied to the case of a single 
helical coil in § 4. 

The spatial variation of the components of a general static magnetic field with helical 
symmetry is discussed in an Appendix. 

2. Exact equations of motion 

The exact equation of motion of a relativistic particle in a static magnetic field may be 
written in the form 

dp/dt = p ~ b ,  

where p is the ratio of the particle velocity to that of light and b a normalised magnetic 
field related to the actual magnetic field B by 

b = e B/ ymoc. 

Throughout this paper small letters denote the normalised magnetic fields correspond- 
ing to the actual magnetic fields denoted by capital letters. Here y 2  = 1/(1 - p 2 ) ,  mo is 
the particle rest mass, e is its charge and r = ct. In the Appendix it is shown that the 
various components of a helical field are related as follows. In a cylindrical coordinate 
system (r,  8, z ) ,  with vector potential A = (Ar, Ae, 0 ) ,  the field components are given by 

where 77 = 8 - kz and k is the inverse wavelength of the helical coils. Here Bo is the 
value of B, on axis and is independent of 77. Further, 

aBr a 
-=- W e )  and (rAe) - r B o ) / ( l  + k2r2). 
877 ar 

Because of the assumed symmetry of the magnetic field the equations of motion 
reveal the following constant of motion: 

p = rPe +&/k  +rue. 

Here as is the normalised vector potential. Since the magnetic field components are 
functions of r, 77 ( = 8 - k z )  only, it is convenient to change variables from r, 8, z to r, 77, 
in which case the equations of motion take the form 

3: d2r = k2s2(p - g )  -+ ag r s 4 [ k 2 ( p  - g )  + p,]’ + bors2&, 
d7 ar 

where g = rue, p, = dq/dr  and s2 = 1/(1+ k2r2) .  The total energy ymoc2 is of course a 
constant, and this implies constancy of p 2  which, in the above notation, takes the form 

(2.1) p2 = Pf + s 2 [ k 2 ( p  -g)2+r2@:].  
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Finally the above equations are combined to specify the path of the particle by giving its 
radial coordinate r as a function of 77. The final equation is a nonlinear ordinary 
differential equation relating the first and second derivatives in the following manner: 

d2r ag p: 7 = k2s2( p - g) + rs4[(p - g)k2 + P,12 + bors2P, 
d77 

In principle, equation (2.1) may be used to express P, in terms of r, 7 and dr/dq, noting 
that P I  = dr/dT = P, dr/ds. However it is convenient in the following to treat these 
equations separately. 

3. Multiple scale perturbation theory 

In 'helical wigglers' the transverse velocity components are small compared with the 
component in the direction of the axis of the device. This implies that the variation of r 
with respect to 77 has two distinct space scales. Firstly there is the fast variation 
associated with the axial motion, and hence with the spatial variation of the magnetic 
field on the scale of the helical variation of the field, and secondly the much slower 
variation associated with the radial motion of the particle. The perturbation theory 
developed below is based on the reasonable assumption that these space variations are 
of a different order of magnitude. 

It is convenient to express the basic equations in dimensional form by introducing 
the reduced variables 4 = P,/kP, S = pk/P, g = pEh and y = kr. Here E = l/kRL, and 
R L  = pmoyc/eB, is the Larmor radius of the particle defined with respect to the total 
velocity in a representative uniform magnetic field B,. In these reduced variables 
equations (2.1) and (2.2) take the form 

1 = s2S2(1 - ~ h ) ~ + 4 ~ [ y ~ ~ ~ + ( d y / d r l ) ~ ] ,  (3.1) 
and 

where now s 2  = 1/(1+ y2)  and a = bo/b,. Further, in terms of these reduced variables, 

P O = P Y ~ ~ [ ~ + S ( ~ - E ~ ) I  (3.3) 

The basic expansion parameters are the ratios of the radial and azimuthal velocities 
to the axial velocity, that is &/PI and &/PI. If we take the time dependence of Po and P I  
to be related to the Larmor frequency, then both the above ratios are proportional to E 

and we can thus treat E as the expansion parameter. To this end we write 

S = - 1 + &  
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and expand (b and y as multiple scale functions of 77, such that 

Y =Yo(% 7 / 1 7  772, * e  .)+EY1(77,771, * * . ) + E 2 Y 2 + .  * '  

4 = 1-41(77,771,. . . ) - E 2 ( b 2 ( 7 7 ,  771, .  . . I + .  . . 
and 

where q1 = €77, 772 = ~'77, etc., as is usual in a multiple scale expansion (Nayfeh 1973). 
Finally we need to expand h, which, from the form given in the Appendix, may be 

written in the form h = -h'( y, v)/& so that 

h ~ Y , 7 7 ~ = h ' ~ Y o , 7 7 ~ + E ~ Y l a h / a Y o + 8 h ' ) + .  I . .  

a2yo/a772 = 0. 

Substitution of these expansions into equation (3.2) gives to lowest order 

We take yo to be independent of 77, since the solution proportional to 77 corresponds to 
an unbounded orbit. To next order,one obtains 

a2y1 /aq2  = s20ah'/ayo+ayos& (3.5) 
whilst the next order gives 

From (3.1) one obtains the relation 

( b 1 =  - (h '+8) /yS (3.7) 
whilst (3.3) and (3.4), to lowest significant order, take the form 

P o  = EP(h'+S)/YO, (3.8) 

and Pz = -p +0(e2) .  Equation (3.7) may be used to eliminate q51 from (3.6), and this 
equation is then integrated over one helical period to give 

ah' -- 

where 

We have, without loss of generality, taken ( yl )  = 0. 
Using equation (3.5) the above equation may be written in the form 

a2Yo/a$ = -av/aYo, (3.10) 

V ( Y 0 )  = $((ay1/ad2) + (1/2Yt)((h' +812). (3.11) 
where 
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It is seen from (3.8) that the second term in the expression for V is simply equal to 
(&)/2p2e2. This equation is the main result of the paper and of course is of the form of 
an equation for a particle moving in a one-dimensional potential V( yo), with q1 playing 
the role of time. Thus the problem of the radial motion of a particle in a helical magnetic 
field can be reduced to a study of the motion in an effective one-dimensional potential. 
This potential is given in the form of an average over one helical period of a simple 
function of the 8 component of the vector potential. 

4. Particle orbits in a helical coil 

The general form for the field due to such a coil is discussed in the Appendix, where it is 
shown that 

m 

L(Y, q)=a[(2yya m = l  1 Kk(w,)Ik(my)cos mv)-$y2]. 

With this form for L, equation (3.5) is readily solved for a y l / d q  and this, together with 
equation (3.11), gives the general form for the potential V, 

(4.1) 

where without loss of generality we have identified Bo and B, so that a = 1. 
In ‘helical wigglers’ two interweaving coils are wound so that the axial component of 

the magnetic field is zero on axis, that is Bo = 0. For such coils the forms for 6 and V are 
as given above except that the term in each equation proportional to y’ must be 
removed. 

Blewett and Chasman (BC) in their analysis did not consider the full expression for 
the magnetic field, but only took the first term in the above series so that 

6 = -2y(Bo/B,)I;( y )  cos q 

where 8, denotes the field strength defined by these authors and is simply related to Bo 
used in the present paper by Bo = BoyaK;( ya) ,  The corresponding effective potential is 
given by 

v = my + 2@ I ;( )i’s2~2 + [I ;( )i2n 
where 2 w 2  =: The problem is now to use this expression for V( y) in equation 
(3.10) and solve for yo as a function of ql .  In particular, one may express the period of 
yo with respect to q1 in the form 

where ym is the maximum value of y. An approximate evaluation of this integral may be 
carried out in the following manner. For 8= 0, the case considered in BC, and for y << 1 

V =4w2y2(1 + 7y2/32) + O( y6). 
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For more general y we replace V by its simplest Pad6 approximation and write 
v=' 2 2 

2w Y /(1-a2y2) 

where a is a constant. With this form for V one finds 
2 2 1/2 T = ( 4 / w ) ( l - a  ym) E ( a y m )  

where E is the complete elliptic integral of the second kind. Recalling that this is the 
period with respect to ql( =E(e-kz)) and noting that equation (3.4) gives z = 
pct + O(e3),  then it is readily found that the frequency of the oscillations with respect to 
time is given by 

W = C / F 1 - a  2 y,) 2 1f2 , 
f i P  

where p is the Larmor radius ( = m o y c / e B o )  as defined in BC. Using the same 
parameters as BC, namely p = 0.348 m, y, = kr,, k = 196 m-', r ,  = 6.2  mm and 
a2=7 /32 ,  one finds (3=8. lx1O8s-' .  The computed value as quoted in BC is 
7.6 x lo8 s-'. Blewett and Chasman also obtain an analytic value for (3 by expanding 
the fields in powers of y, and they find 

(5 = (c/&p)(l+ 3yk/32) 

which gives, for the values quoted, W = 6.9 x lo8 s-l. They actually state their value to 
be 7 - 4  X lo8 sC1, but this is not consistent with their analytic formula. Their treatment of 
the fields and application to the problem considered is not really justifiable since they 
expand in powers of y, whereas the value of y is of order 1.2. The present treatment of 
course does not rely on such an expansion. Though the evaluation of the frequency of 
oscillations has been reduced to quadrature, it has not been found possible to evaluate 
this integral analytically. An approximate evaluation gives good agreement with the 
numerical results quoted in BC. 

Summary 

The problem of studying the motion of a charged particle in a helical magnetic field has 
been reduced to the study of the motion in a one-dimensional potential given explicitly 
by (3.11). For a particular field configuration the period of oscillation has been 
calculated and shown to be in good agreement with computer simulation results. 

Appendix 

We consider a current of magnitude J flowing in an  infinitely long helical coil of pitch 
27r/k. In such a case all field components are functions of r and q ( = e - kz) only. In 
terms of the vector potential A = (Ar, Ae, 0) the field components are given by 

B@ = -k aAJa7, B, = k aAe/aq, rB, = a(rAe)/ar - aA,/aq. 

Note we have not chosen a Lorentz gauge so V2A # J. The condition that no current 
flows in the radial direction implies that (curl B)r  = 0, and this, with the condition that 
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rBe + 0 as r + 0, gives rise to the relation 

B, + krBe = BO. 

Bo is a constant independent of q and equal to B, on the axis. Because of the nature of 
the helical windings, we have that the 8 and z components of the current are directly 
proportional, and this leads to the relation 

aB,/aq = a(rBe)/ar. 

Away from the current carrying coils one has 

(1 + k2rZ) a2A, -- 
2 - 0 ,  r ”( ar rd  ar (rA,)) + r2 a77 

so that for r < ra (the radius of the coil) 
00 

rA, = c CmIm(mkr) sin(mq). 
m = O  

The constants Cm may be obtained in the usual manner by matching the solutions for r 
less and greater than r,, and in this way one obtains 

Be =- kJya 2 mKL(my,)I,(my) cos mq. 
T y  m = l  

Here y = kr, y a  = kr,, K, is the modified Bessel function of the second kind, I, of the 
first kind and the prime denotes differentiation with respect to the argument. In the 
limit r + 0 the above expression reduces to the one given by Smythe (1950 p 277). The 
value of B, on axi-, namely Bo, is also given by Smythe and takes the form 

Bo = Jk/ 2 T. 

The above results may be used to obtain all the components of the magnetic field, and in 
particular 

rA&, 7) ( B o / ~ ~ ) ( $ Y ~ - ~ Y Y ~  m = l  c KA(mya)IL(my) COS mq). 

Recalling that 6 = -rAek2/B, leads to the expression given for 6 in 0 4. 
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